<listing id="dz7xh"></listing>
<var id="dz7xh"><strike id="dz7xh"></strike></var><var id="dz7xh"></var>
<var id="dz7xh"><strike id="dz7xh"><listing id="dz7xh"></listing></strike></var>
<var id="dz7xh"></var>
<cite id="dz7xh"><video id="dz7xh"><menuitem id="dz7xh"></menuitem></video></cite>
<cite id="dz7xh"><video id="dz7xh"><thead id="dz7xh"></thead></video></cite>
<var id="dz7xh"><span id="dz7xh"><menuitem id="dz7xh"></menuitem></span></var><menuitem id="dz7xh"><video id="dz7xh"><thead id="dz7xh"></thead></video></menuitem>
<var id="dz7xh"></var>
<thead id="dz7xh"><video id="dz7xh"><thead id="dz7xh"></thead></video></thead>
<var id="dz7xh"></var><menuitem id="dz7xh"><span id="dz7xh"><menuitem id="dz7xh"></menuitem></span></menuitem>
<var id="dz7xh"></var>
<var id="dz7xh"></var>
<var id="dz7xh"></var>
<cite id="dz7xh"><span id="dz7xh"><thead id="dz7xh"></thead></span></cite><cite id="dz7xh"><video id="dz7xh"></video></cite>
首頁>技術服務>

六類吸附等溫線類型

六類吸附等溫線類型

發布日期:2013-08-16 來源:貝士德儀器 點擊量:2010

六類吸附等溫線類型
  幾乎每本類似參考書都會提到,前五種是BDDT(Brunauer-Deming-Deming-Teller)分類,先由此四人將大量等溫線歸為五 類,階梯狀的第六類為Sing增加。每一種類型都會有一套說法,其實可以這么理解,以相對壓力為X軸,氮氣吸附量為Y軸,再將X軸相對壓力粗略地分為低壓 (0.0-0.1)、中壓(0.3-0.8)、高壓(0.90-1.0)三段。那么吸附曲線在: 低壓端偏Y軸則說明材料與氮有較強作用力(?型,??型,Ⅳ型),較多微孔存在時由于微孔內強吸附勢,吸附曲線起始時呈?型;低壓端偏X軸說明與材料作用力弱(???型,Ⅴ型)。 中壓端多為氮氣在材料孔道內的冷凝積聚,介孔分析就來源于這段數據,包括樣品粒子堆積產生的孔,有序或梯度的介孔范圍內孔道。BJH方法就是基于這一段得出的孔徑數據; 高壓段可粗略地看出粒子堆積程度,如?型中如最后上揚,則粒子未必均勻。平常得到的總孔容通常是取相對壓力為0.99左右時氮氣吸附量的冷凝值。

六類吸附等溫線類型

發布日期:2021-04-11 來源:貝士德儀器 點擊量:2010

六類吸附等溫線類型
  幾乎每本類似參考書都會提到,前五種是BDDT(Brunauer-Deming-Deming-Teller)分類,先由此四人將大量等溫線歸為五 類,階梯狀的第六類為Sing增加。每一種類型都會有一套說法,其實可以這么理解,以相對壓力為X軸,氮氣吸附量為Y軸,再將X軸相對壓力粗略地分為低壓 (0.0-0.1)、中壓(0.3-0.8)、高壓(0.90-1.0)三段。那么吸附曲線在: 低壓端偏Y軸則說明材料與氮有較強作用力(?型,??型,Ⅳ型),較多微孔存在時由于微孔內強吸附勢,吸附曲線起始時呈?型;低壓端偏X軸說明與材料作用力弱(???型,Ⅴ型)。 中壓端多為氮氣在材料孔道內的冷凝積聚,介孔分析就來源于這段數據,包括樣品粒子堆積產生的孔,有序或梯度的介孔范圍內孔道。BJH方法就是基于這一段得出的孔徑數據; 高壓段可粗略地看出粒子堆積程度,如?型中如最后上揚,則粒子未必均勻。平常得到的總孔容通常是取相對壓力為0.99左右時氮氣吸附量的冷凝值。
91香蕉视频污